From The Labs

Exploring the stress-mood-appetite connection

Does stress affect your appetite or your mood? Many people have experienced stressful situations that trigger a particular mood and also change certain feelings toward food. The laboratory of Dr. Yong Xu, and his colleagues looked into the possibility of crosstalk between stress, eating and mood in animal models and found quite interesting brain connections.

The appetite-mood connection in stressed mouse brains. This microscopy image shows white arrowheads pointing at neurons from the feeding center of the brain (green) located close to dopamine neurons (purple) in the mood center, suggesting a connection between the two centers. Image courtesy of the Xu lab/Molecular Psychiatry, 2019.

“This study was initiated by first author Dr. Na Qu of Wuhan Mental Health Center, China, when she was visiting my lab,” said Xu, associate professor of pediatrics and of molecular and cellular biology at Baylor College of Medicine.

Qu, a practicing psychiatrist who also conducts basic brain research, was interested in investigating whether there was a neurological basis for the association between depression and other psychiatric disorders, and alterations in metabolism, such as obesity or lack of appetite, she had observed in a number of her patients.

Xu, Qu and their colleagues worked with a mouse model of depression induced by chronic stress and observed that depressed animals ate less and lost weight. Then, they applied a number of experimental techniques to identify the neuronal circuits that changed activity when the animals were depressed.

Dr. Yong Xu

“We found that POMC neurons in the hypothalamus, which are essential for regulating body weight and feeding behavior, extend physical connections into another region of the brain that has numerous dopamine neurons that are implicated in the regulation of mood,” said Xu, who also is a researcher at the USDA/ARS Children’s Nutrition Research Center at Baylor and Texas Children’s Hospital. “We know that a decrease in dopamine may trigger depression.”

In addition to the physical connection between the feeding and the mood centers of the brain, the researchers also discovered that when they triggered depression in mice, the POMC neurons were activated and this led to inhibition of the dopamine neurons. Interestingly, when the researchers inhibited the neuronal circuit connecting the feeding and the mood centers, the animals ate more, gained weight and looked less depressed.

We have discovered that a form of chronic stress triggers a neuronal circuit that starts in a population of cells that are known to regulate metabolism and feeding behavior and ends in a group of neurons that are famous for their regulation of mood,” Xu said.

“Stress-triggered activation of the feeding center led to inhibition of dopamine-producing neurons in the mood center.”

Xu, Qu and their colleagues propose that their findings provide a new biological basis that may explain some of the connections between mood alterations and changes in metabolism observed in people, and may provide solutions in the future.

“Our findings only explain one scenario, when depression is associated with poor appetite. But in other cases depression has been linked to overeating. We are interested in investigating this second association between mood and eating behavior to identify the neuronal circuits that may explain that response,” Xu said.

Learn more about this study in the journal Molecular Psychiatry.

Other contributors to this work include Yanlin He, Chunmei Wang, Pingwen Xu, Yongjie Yang, Xing Cai, Hesong Liu, Kaifan Yu, Zhou Pei, Ilirjana Hyseni, Zheng Sun, Makoto Fukuda, Yi Li and Qing Tian. The authors are affiliated with one or more of the following institutions: Baylor College of Medicine, Huazhong University of Science and Technology and China University of Geosciences.

This work received financial support from grants from the National Institutes of Health  (K99DK107008,606 R01DK111436, R01ES027544, R21CA215591), USDA/CRIS (6250-51000-059-04S), American Diabetes Association (1-17-PDF-138), American Heart Association awards  (17GRNT32960003, 16GRNT30970064 and 16POST27260254), National Natural Science Foundation of China (81400886), Hubei Province health and family planning scientific research project (WJ2015Q033) and Population and Family Planning Commission of Wuhan (WX14B34). Further support was provided by award and fellowships from Wuhan Young & Middle-Aged Talents, Health and Family Planning Commission of Wuhan Municipality and China Scholarship Council (File NO.201608420019).

 

By Ana María Rodríguez, Ph.D.

 

Receive From the Labs via email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Leave a Reply

Your email address will not be published. Required fields are marked *